Python Decorators: A Beginner's Guide for Insurance and Financial Systems
How to use decorators in Python? Let's learn it right now!
Imagine wrapping a gift. The present inside remains unchanged, but the wrapping adds extra value—it protects the gift, makes it look beautiful, and tells a story about what’s inside. Python decorators work the same way. They wrap your functions with additional functionality without changing the function itself.
In insurance and financial systems, decorators help you add crucial features like logging transactions, validating amounts, checking security permissions, and measuring performance—all without cluttering your core business logic. This guide explains decorators in simple terms designed for developers new to Python working in the financial sector.
What Is a Decorator?
A decorator is a function that takes another function as input and extends its behavior without modifying the original function. Think of it as a “wrapper” that adds extra processing before or after your function runs.
A Simple Real-World Example
Consider a payment processing function:
def process_payment(amount):
“““Process a payment in the system.“““
# Deduct money from account
# Update ledger
# Return confirmation
return f"Payment of ${amount} processed“
Now, imagine you need to log this transaction, validate the amount, and measure how long it takes. Instead of rewriting the function, you can use decorators to add these features:
@validate_amount
@log_transaction
@measure_execution_time
def process_payment(amount):
“”“Process a payment in the system.”“”
return f”Payment of ${amount} processed”
Each decorator adds one specific responsibility while your core function stays clean and focused.
Why Use Decorators in Insurance and Financial Systems?
Financial systems require exceptional reliability, security, and traceability. Decorators help you meet these requirements by separating concerns:
Logging Transactions – Track every financial operation for compliance and auditing
Validating Data – Ensure amounts are positive, dates are valid, and required fields exist before processing
Security Checks – Verify user authorization before accessing sensitive policyholder data
Performance Monitoring – Identify slow operations that affect customer experience
Caching Results – Store expensive calculations like premium or claim assessments to reduce processing time
By using decorators, you keep your business logic separate from these supporting features. This makes your code easier to test, maintain, and understand.
Understanding How Decorators Work
The Mechanics of Decoration
A decorator is simply a function that:
Takes a function as an argument
Returns a wrapper function
The wrapper function contains the original function plus extra logic
Here’s the basic structure:
def my_decorator(func):
“”“A simple decorator template.”“”
def wrapper(*args, **kwargs):
# Code that runs BEFORE the function
print(”Before the function runs”)
# Call the original function
result = func(*args, **kwargs)
# Code that runs AFTER the function
print(”After the function runs”)
return result
return wrapper
# Apply the decorator
@my_decorator
def greet(name):
return f”Hello, {name}!”
# When you call the function
print(greet(”Alice”))
Output:
Before the function runs
Hello, Alice!
After the function runs
When you use @my_decorator, Python automatically calls my_decorator(greet) and replaces greet with the returned wrapper function.
Parameters and Return Values
Decorators must handle any arguments your function receives:
def simple_decorator(func):
def wrapper(*args, **kwargs):
# *args captures positional arguments
# **kwargs captures keyword arguments
print(f”Function called with args={args}, kwargs={kwargs}”)
return func(*args, **kwargs)
return wrapper
Using *args and **kwargs ensures your decorator works with functions that have any signature.
Practical Use Cases for Insurance and Financial Systems
1. Logging Transactions
Every transaction in a financial system must be logged for compliance and auditing.
import logging
from datetime import datetime
def log_transaction(func):
“”“Decorator to log financial transactions.”“”
def wrapper(*args, **kwargs):
timestamp = datetime.now().isoformat()
print(f”[{timestamp}] Transaction started: {func.__name__}”)
try:
result = func(*args, **kwargs)
print(f”[{timestamp}] Transaction completed: {func.__name__}”)
return result
except Exception as e:
print(f”[{timestamp}] Transaction failed: {func.__name__} - Error: {str(e)}”)
raise
return wrapper
@log_transaction
def process_claim(claim_id, amount):
“”“Process an insurance claim.”“”
print(f”Processing claim {claim_id} for ${amount}”)
return {”claim_id”: claim_id, “status”: “approved”}
# Usage
process_claim(”CLM-2025-001”, 5000)
Output:
[2025-12-10T14:43:37] Transaction started: process_claim
Processing claim CLM-2025-001 for $5000
[2025-12-10T14:43:37] Transaction completed: process_claim
2. Validating Data
Ensure amounts are valid before processing payments.
def validate_amount(func):
“”“Decorator to validate that amounts are positive.”“”
def wrapper(*args, **kwargs):
# Extract amount from arguments
if ‘amount’ in kwargs:
amount = kwargs[’amount’]
elif len(args) > 1:
amount = args[1]
else:
raise ValueError(”Amount not found in arguments”)
if amount <= 0:
raise ValueError(f”Amount must be positive. Received: {amount}”)
if amount > 1000000:
raise ValueError(f”Amount exceeds maximum allowed. Received: {amount}”)
return func(*args, **kwargs)
return wrapper
@validate_amount
def transfer_funds(account_id, amount):
“”“Transfer funds between accounts.”“”
print(f”Transferring ${amount} from account {account_id}”)
return {”status”: “success”, “amount”: amount}
# Usage examples
transfer_funds(”ACC-123”, 500) # Success
# transfer_funds(”ACC-123”, -500) # Raises ValueError
# transfer_funds(”ACC-123”, 2000000) # Raises ValueError
3. Checking Authorization
Verify that users have permission before accessing sensitive data.
def requires_permission(permission):
“”“Decorator to check if user has required permission.”“”
def decorator(func):
def wrapper(user, *args, **kwargs):
if not hasattr(user, ‘permissions’):
raise PermissionError(f”User object missing permissions attribute”)
if permission not in user.permissions:
raise PermissionError(
f”User {user.name} lacks permission: {permission}”
)
print(f”User {user.name} authorized for {permission}”)
return func(user, *args, **kwargs)
return wrapper
return decorator
class User:
def __init__(self, name, permissions):
self.name = name
self.permissions = permissions
@requires_permission(”view_claims”)
def view_claim_details(user, claim_id):
“”“Access sensitive claim information.”“”
return f”Claim {claim_id} details for {user.name}”
# Usage
admin_user = User(”Alice”, [”view_claims”, “approve_claims”])
regular_user = User(”Bob”, [”view_own_claims”])
print(view_claim_details(admin_user, “CLM-001”)) # Success
# print(view_claim_details(regular_user, “CLM-001”)) # Raises PermissionError
4. Measuring Performance
Identify slow operations that affect system performance.
import time
def measure_execution_time(func):
“”“Decorator to measure how long a function takes to execute.”“”
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
execution_time = end_time - start_time
print(f”{func.__name__} took {execution_time:.4f} seconds”)
return result
return wrapper
@measure_execution_time
def calculate_premium(age, health_rating):
“”“Calculate insurance premium based on risk factors.”“”
time.sleep(0.5) # Simulate expensive calculation
base_rate = 1000
age_factor = age / 100
health_factor = 1 + (health_rating / 10)
return base_rate * age_factor * health_factor
# Usage
calculate_premium(45, 8)
Output:
calculate_premium took 0.5023 seconds
5. Caching Results
Store expensive calculations to avoid recalculating the same values.
import functools
def cache_result(func):
“”“Decorator to cache function results.”“”
cache = {}
def wrapper(*args, **kwargs):
# Create a cache key from arguments
cache_key = str(args) + str(sorted(kwargs.items()))
if cache_key in cache:
print(f”Returning cached result for {func.__name__}”)
return cache[cache_key]
result = func(*args, **kwargs)
cache[cache_key] = result
return result
return wrapper
@cache_result
def calculate_claim_value(claim_type, severity):
“”“Calculate the value of an insurance claim.”“”
print(f”Calculating claim value for {claim_type} (severity: {severity})”)
time.sleep(0.5) # Simulate expensive calculation
base_values = {
“auto”: 5000,
“health”: 10000,
“property”: 25000
}
return base_values.get(claim_type, 0) * (1 + severity / 10)
# Usage
print(calculate_claim_value(”auto”, 5)) # Calculates
print(calculate_claim_value(”auto”, 5)) # Returns cached result
Combining Multiple Decorators
You can stack multiple decorators on a single function. They apply from bottom to top.
@log_transaction
@validate_amount
@measure_execution_time
def process_payment(account_id, amount):
“”“Process a payment with logging, validation, and performance monitoring.”“”
print(f”Processing ${amount} from account {account_id}”)
time.sleep(0.1)
return {”status”: “success”, “amount”: amount}
# Usage
process_payment(”ACC-123”, 500)
Order of execution:
measure_execution_timewrapper starts → records start timevalidate_amountwrapper starts → checks if amount is validlog_transactionwrapper starts → logs the transactionOriginal
process_paymentfunction executesWrappers exit in reverse order, each finishing their logic
Built-in Decorators You’ll Use
Python includes decorators for common tasks. Understanding these helps you recognize decorator patterns in existing code.
@property
The @property decorator lets you access data safely without calling a method:
class InsurancePolicy:
def __init__(self, policy_id, premium):
self._policy_id = policy_id
self._premium = premium
@property
def policy_id(self):
“”“Access policy ID as an attribute.”“”
return self._policy_id
@property
def annual_cost(self):
“”“Calculate annual cost instead of storing it.”“”
return self._premium * 12
# Usage
policy = InsurancePolicy(”POL-001”, 100)
print(policy.policy_id) # Works like an attribute
print(policy.annual_cost) # Calculates on access
@staticmethod and @classmethod
These decorators define methods that don’t need instance or class access:
class InsuranceCalculator:
company_name = “SafeGuard Insurance”
@staticmethod
def calculate_discount(age):
“”“Static method: doesn’t need instance or class.”“”
if age > 65:
return 0.15 # 15% discount
return 0.05 # 5% discount
@classmethod
def from_company_name(cls, name):
“”“Class method: receives class, not instance.”“”
instance = cls()
instance.company_name = name
return instance
# Usage
discount = InsuranceCalculator.calculate_discount(70) # Call without instance
print(discount) # 0.15
Practical Exercise: Building Your First Decorator
Let’s create a decorator for a policy payment processor that combines validation, logging, and caching.
import functools
from datetime import datetime
def process_with_audit_trail(func):
“”“Decorator that validates, logs, and caches policy payments.”“”
# Caching
cache = {}
@functools.wraps(func)
def wrapper(*args, **kwargs):
# Create cache key
cache_key = str(args) + str(sorted(kwargs.items()))
if cache_key in cache:
print(f”[CACHE HIT] Using cached result”)
return cache[cache_key]
# Validation
if len(args) < 2:
raise ValueError(”Function requires at least 2 arguments”)
policy_id, amount = args[0], args[1]
if not isinstance(policy_id, str) or not isinstance(amount, (int, float)):
raise TypeError(”policy_id must be string, amount must be number”)
if amount <= 0:
raise ValueError(”Amount must be positive”)
# Logging
timestamp = datetime.now().isoformat()
print(f”[{timestamp}] Processing: policy_id={policy_id}, amount={amount}”)
# Execute function
try:
result = func(*args, **kwargs)
print(f”[{timestamp}] Success: {result}”)
cache[cache_key] = result
return result
except Exception as e:
print(f”[{timestamp}] Failed: {str(e)}”)
raise
return wrapper
@process_with_audit_trail
def process_policy_payment(policy_id, amount):
“”“Process a payment for an insurance policy.”“”
return {
“policy_id”: policy_id,
“amount”: amount,
“status”: “processed”,
“timestamp”: datetime.now().isoformat()
}
# Usage
payment1 = process_policy_payment(”POL-2025-001”, 500)
print(payment1)
payment2 = process_policy_payment(”POL-2025-001”, 500) # Returns cached result
Best Practices for Using Decorators
1. Keep Decorators Simple and Focused
Each decorator should do one thing well. Don’t combine multiple concerns in a single decorator.
# ✓ Good: Each decorator has one responsibility
@validate_data
@log_operation
@cache_result
def critical_function(data):
pass
# ✗ Avoid: Decorator doing too much
@validate_log_cache_everything
def critical_function(data):
pass
2. Use Descriptive Names
Your decorator name should clearly indicate what it does.
# ✓ Good
def requires_authentication(func):
pass
# ✗ Unclear
def check_stuff(func):
pass
3. Preserve Function Metadata
Use functools.wraps to keep the original function’s name and documentation:
import functools
def my_decorator(func):
@functools.wraps(func) # This is important!
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
@my_decorator
def important_function():
“”“This is an important function.”“”
pass
# Without @functools.wraps:
# important_function.__name__ would be ‘wrapper’
# important_function.__doc__ would be None
# With @functools.wraps:
# important_function.__name__ is still ‘important_function’
# important_function.__doc__ is still the original docstring
4. Document Your Decorators
Always explain what your decorator does and how to use it:
def audit_financial_transaction(func):
“”“
Decorator to audit financial transactions for compliance.
Logs all transaction details, validates amounts, and stores
audit trail for regulatory reporting.
Args:
func: The transaction function to wrap.
Returns:
Wrapped function with audit trail capability.
Raises:
ValueError: If transaction amount is invalid.
PermissionError: If user lacks authorization.
Example:
@audit_financial_transaction
def transfer_funds(from_account, to_account, amount):
return {”status”: “success”}
“”“
@functools.wraps(func)
def wrapper(*args, **kwargs):
# Implementation here
return func(*args, **kwargs)
return wrapper
5. Test Decorated Functions Thoroughly
Test both the original behavior and the decorator’s behavior:
def test_decorated_function_executes():
“”“Test that the decorated function still works.”“”
@my_decorator
def add(a, b):
return a + b
assert add(2, 3) == 5
def test_decorator_adds_logging(capsys):
“”“Test that the decorator logs correctly.”“”
@log_execution
def multiply(a, b):
return a * b
multiply(4, 5)
captured = capsys.readouterr()
assert “multiply” in captured.out
Common Mistakes to Avoid
1. Forgetting to Return the Wrapper Function
# ✗ Wrong: Decorator doesn’t return the wrapper
def broken_decorator(func):
def wrapper(*args, **kwargs):
print(”Running function”)
return func(*args, **kwargs)
# Missing: return wrapper
# ✓ Correct
def working_decorator(func):
def wrapper(*args, **kwargs):
print(”Running function”)
return func(*args, **kwargs)
return wrapper
2. Not Handling Arguments Correctly
# ✗ Wrong: Assumes specific arguments
def bad_decorator(func):
def wrapper(x, y): # Only works with 2 args!
return func(x, y)
return wrapper
# ✓ Correct: Works with any arguments
def good_decorator(func):
def wrapper(*args, **kwargs): # Works with any signature
return func(*args, **kwargs)
return wrapper
3. Ignoring Return Values
# ✗ Wrong: Doesn’t return the function’s result
def broken_decorator(func):
def wrapper(*args, **kwargs):
print(”Before”)
func(*args, **kwargs) # Result is lost!
print(”After”)
return wrapper
# ✓ Correct: Preserves return value
def working_decorator(func):
def wrapper(*args, **kwargs):
print(”Before”)
result = func(*args, **kwargs)
print(”After”)
return result # Return the result
return wrapper
Summary
Python decorators are powerful tools for adding functionality to your functions without modifying the original code. In insurance and financial systems, decorators help you:
Log transactions for compliance and auditing
Validate data before processing sensitive operations
Check permissions to ensure security
Monitor performance to identify bottlenecks
Cache results to reduce computational overhead
Start with simple decorators that do one thing well, combine them as needed, and always document your code. Decorators will make your financial system code cleaner, more maintainable, and more professional.
Key Takeaways
A decorator is a function that wraps another function to add functionality
Use
*argsand**kwargsto handle any function signatureAlways use
functools.wrapsto preserve function metadataStack multiple decorators for complex behavior
Test decorated functions thoroughly
Keep decorators focused on a single responsibility
Next Steps
Now that you understand decorators, explore these related concepts:
Class decorators: Apply decorators to entire classes
Parameterized decorators: Create decorators that accept configuration
Decorator libraries: Use third-party decorators like those in the
functoolsmoduleAdvanced patterns: Combine decorators with other Python features like context managers
Happy coding, and may your financial systems run with precision and clarity!

